首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A proapoptotic effect of valproic acid on progenitors of embryonic stem cell-derived glutamatergic neurons
Authors:R Fujiki  A Sato  M Fujitani  T Yamashita
Institution:1.Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan;2.JST, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
Abstract:Valproic acid (VPA) is a branched-chain saturated fatty acid with a long history of clinical use as an antiepileptic drug (AED). VPA is also known to inhibit histone deacetylases (HDACs) and to cause diverse effects on neural progenitor cells (NPCs) and neurons. Although the neuroprotective or neurodestructive effects of VPA have been investigated in heterogeneous cell populations, in this study, we used homogeneous populations of NPCs and glutamatergic cortical pyramidal neurons, which were differentiated from embryonic stem (ES) cells. At therapeutic concentrations, VPA had a proapoptotic effect on ES cell-derived NPCs of glutamatergic neurons, but not on their progeny. This effect of VPA most likely occurred through the inhibition of HDACs, because similar phenotypes were observed following treatment with other HDAC inhibitors (HDACis) such as trichostatin A and sodium butyrate. The proapoptotic phenotype was not observed when cells were exposed to a structural analog of VPA, valpromide (VPM), which has the same antiepileptic effect as VPA, but does not inhibit HDACs. Western blotting confirmed that treatment with HDACis, but not VPM, significantly increased the levels of histone H3 acetylation in NPCs. HDACi treatments did not affect the survival of neurons, although the acetylation levels were increased to a limited extent. These results, which are based on a homogeneous culture system, suggest that VPA inhibits HDAC activity and induces the apoptosis of NPCs that are fated to differentiate into glutamatergic neurons. The dose-dependent effects of VPA both on apoptosis and hyperacetylation of histone H3 in NPCs supported this notion. These cell type- and differentiation stage-specific effects of VPA imply that dysfunction of HDACs during pregnancy significantly increase the risk of congenital malformations associated with VPA administration.
Keywords:ES-derived glutamatergic neuron  neural progenitor cell  valproic acid  apoptosis  histone acetylation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号