首页 | 本学科首页   官方微博 | 高级检索  
     


In Vivo Study of Transverse Carpal Ligament Stiffness Using Acoustic Radiation Force Impulse (ARFI) Imaging
Authors:Zhilei Liu Shen  D Geoffrey Vince  Zong-Ming Li
Affiliation:1. Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, United States of America.; 2. Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio, United States of America.; 3. Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, Ohio, United States of America.; University of Pittsburgh, United States of America,
Abstract:The transverse carpal ligament (TCL) forms the volar boundary of the carpal tunnel and may provide mechanical constraint to the median nerve, leading to carpal tunnel syndrome. Therefore, the mechanical properties of the TCL are essential to better understand the etiology of carpal tunnel syndrome. The purpose of this study was to investigate the in vivo TCL stiffness using acoustic radiation force impulse (ARFI) imaging. The shear wave velocity (SWV) of the TCL was measured using Virtual Touch IQTM software in 15 healthy, male subjects. The skin and the thenar muscles were also examined as reference tissues. In addition, the effects of measurement location and ultrasound transducer compression on the SWV were studied. The SWV of the TCL was dependent on the tissue location, with greater SWV values within the muscle-attached region than those outside of the muscle-attached region. The SWV of the TCL was significantly smaller without compression (5.21 ± 1.08 m/s) than with compression (6.62 ± 1.18 m/s). The SWV measurements of the skin and the thenar muscles were also affected by transducer compression, but to different extents than the SWV of the TCL. Therefore to standardize the ARFI imaging procedure, it is recommended that a layer of ultrasound gel be maintained to minimize the effects of tissue compression. This study demonstrated the feasibility of ARFI imaging for assessing the stiffness characteristics of the TCL in vivo, which has the potential to identify pathomechanical changes of the tissue.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号