首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Arsenic Inhibits Autophagic Flux,Activating the Nrf2-Keap1 Pathway in a p62-Dependent Manner
Authors:Alexandria Lau  Yi Zheng  Shasha Tao  Huihui Wang  Samantha A Whitman  Eileen White  Donna D Zhang
Institution:Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USAa;Cancer Institute of New Jersey, New Brunswick, New Jersey, USAb;Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USAc;Arizona Cancer Center, University of Arizona, Tucson, Arizona, USAd
Abstract:The Nrf2-Keap1 signaling pathway is a protective mechanism promoting cell survival. Activation of the Nrf2 pathway by natural compounds has been proven to be an effective strategy for chemoprevention. Interestingly, a cancer-promoting function of Nrf2 has recently been observed in many types of tumors due to deregulation of the Nrf2-Keap1 axis, which leads to constitutive activation of Nrf2. Here, we report a novel mechanism of Nrf2 activation by arsenic that is distinct from that of chemopreventive compounds. Arsenic deregulates the autophagic pathway through blockage of autophagic flux, resulting in accumulation of autophagosomes and sequestration of p62, Keap1, and LC3. Thus, arsenic activates Nrf2 through a noncanonical mechanism (p62 dependent), leading to a chronic, sustained activation of Nrf2. In contrast, activation of Nrf2 by sulforaphane (SF) and tert-butylhydroquinone (tBHQ) depends upon Keap1-C151 and not p62 (the canonical mechanism). More importantly, SF and tBHQ do not have any effect on autophagy. In fact, SF and tBHQ alleviate arsenic-mediated deregulation of autophagy. Collectively, these findings provide evidence that arsenic causes prolonged activation of Nrf2 through autophagy dysfunction, possibly providing a scenario similar to that of constitutive activation of Nrf2 found in certain human cancers. This may represent a previously unrecognized mechanism underlying arsenic toxicity and carcinogenicity in humans.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号