首页 | 本学科首页   官方微博 | 高级检索  
     


Distribution,functional impact,and origin mechanisms of copy number variation in the barley genome
Authors:María Mu?oz-Amatriaín  Steven R Eichten  Thomas Wicker  Todd A Richmond  Martin Mascher  Burkhard Steuernagel  Uwe Scholz  Ruvini Ariyadasa  Manuel Spannagl  Thomas Nussbaumer  Klaus FX Mayer  Stefan Taudien  Matthias Platzer  Jeffrey A Jeddeloh  Nathan M Springer  Gary J Muehlbauer  Nils Stein
Abstract:

Background

There is growing evidence for the prevalence of copy number variation (CNV) and its role in phenotypic variation in many eukaryotic species. Here we use array comparative genomic hybridization to explore the extent of this type of structural variation in domesticated barley cultivars and wild barleys.

Results

A collection of 14 barley genotypes including eight cultivars and six wild barleys were used for comparative genomic hybridization. CNV affects 14.9% of all the sequences that were assessed. Higher levels of CNV diversity are present in the wild accessions relative to cultivated barley. CNVs are enriched near the ends of all chromosomes except 4H, which exhibits the lowest frequency of CNVs. CNV affects 9.5% of the coding sequences represented on the array and the genes affected by CNV are enriched for sequences annotated as disease-resistance proteins and protein kinases. Sequence-based comparisons of CNV between cultivars Barke and Morex provided evidence that DNA repair mechanisms of double-strand breaks via single-stranded annealing and synthesis-dependent strand annealing play an important role in the origin of CNV in barley.

Conclusions

We present the first catalog of CNVs in a diploid Triticeae species, which opens the door for future genome diversity research in a tribe that comprises the economically important cereal species wheat, barley, and rye. Our findings constitute a valuable resource for the identification of CNV affecting genes of agronomic importance. We also identify potential mechanisms that can generate variation in copy number in plant genomes.
Keywords:Barley  Copy number variation  Comparative genomic hybridization  Disease-resistance genes  Double-strand break repair mechanisms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号