首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Impact of Alpha-Syntrophin Deletion on the Changes in Tissue Structure and Extracellular Diffusion Associated with Cell Swelling under Physiological and Pathological Conditions
Authors:Lesia Dmytrenko  Michal Cicanic  Miroslava Anderova  Ivan Vorisek  Ole Petter Ottersen  Eva Sykova  Lydia Vargova
Institution:1. Institute of Experimental Medicine AS CR, v.v.i., Prague, Czech Republic.; 2. Charles University, 2nd Faculty of Medicine, Prague, Czech Republic.; 3. Center for Molecular Biology and Neuroscience and Department of Anatomy, University of Oslo, Oslo, Norway.; Univ. Kentucky, United States of America,
Abstract:Aquaporin-4 (AQP4) is the primary cellular water channel in the brain and is abundantly expressed by astrocytes along the blood-brain barrier and brain-cerebrospinal fluid interfaces. Water transport via AQP4 contributes to the activity-dependent volume changes of the extracellular space (ECS), which affect extracellular solute concentrations and neuronal excitability. AQP4 is anchored by α-syntrophin (α-syn), the deletion of which leads to reduced AQP4 levels in perivascular and subpial membranes. We used the real-time iontophoretic method and/or diffusion-weighted magnetic resonance imaging to clarify the impact of α-syn deletion on astrocyte morphology and changes in extracellular diffusion associated with cell swelling in vitro and in vivo. In mice lacking α-syn, we found higher resting values of the apparent diffusion coefficient of water (ADCW) and the extracellular volume fraction (α). No significant differences in tortuosity (λ) or non-specific uptake (k′), were found between α-syn-negative (α-syn −/−) and α-syn-positive (α-syn +/+) mice. The deletion of α-syn resulted in a significantly smaller relative decrease in α observed during elevated K+ (10 mM) and severe hypotonic stress (−100 mOsmol/l), but not during mild hypotonic stress (−50 mOsmol/l). After the induction of terminal ischemia/anoxia, the final values of ADCW as well as of the ECS volume fraction α indicate milder cell swelling in α-syn −/− in comparison with α-syn +/+ mice. Shortly after terminal ischemia/anoxia induction, the onset of a steep rise in the extracellular potassium concentration and an increase in λ was faster in α-syn −/− mice, but the final values did not differ between α-syn −/− and α-syn +/+ mice. This study reveals that water transport through AQP4 channels enhances and accelerates astrocyte swelling. The substantially altered ECS diffusion parameters will likely affect the movement of neuroactive substances and/or trophic factors, which in turn may modulate the extent of tissue damage and/or drug distribution.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号