首页 | 本学科首页   官方微博 | 高级检索  
     


Human P-glycoprotein Contains a Greasy Ball-and-Socket Joint at the Second Transmission Interface
Authors:Tip W. Loo  M. Claire Bartlett  David M. Clarke
Affiliation:From the Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
Abstract:The P-glycoprotein drug pump protects us from toxins. Drug-binding sites in the transmembrane (TM) domains (TMDs) are connected to the nucleotide-binding domains (NBDs) by intracellular helices (IHs). TMD-NBD cross-talk is a key step in the transport mechanism because drug binding stimulates ATP hydrolysis followed by drug efflux. Here, we tested whether the IHs are critical for maturation and TMD-NBD coupling by characterizing the effects of mutations to the IH1 and IH2 interfaces. Although IH1 mutations had little effect, most mutations at the IH2-NBD2 interface inhibited maturation or activity. For example, the F1086A mutation at the IH2-NBD2 interface abolished drug-stimulated ATPase activity. The mutant F1086A, however, retained the ability to bind ATP and drug substrates. The mutant was defective in mediating ATP-dependent conformational changes in the TMDs because binding of ATP no longer promoted cross-linking between cysteines located at the extracellular ends of TM segments 6 and 12. Replacement of Phe-1086 (in NBD2) with hydrophobic but not charged residues yielded active mutants. The activity of the F1086A mutant could be restored when the nearby residue Ala-266 (in IH2) was replaced with aromatic residues. These results suggest that Ala-266/Phe-1086 lies in a hydrophobic IH2-NBD2 “ball-and-socket” joint.
Keywords:ABC Transporter   ATPases   Membrane Proteins   Membrane Trafficking   Protein Folding
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号