首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Global ribosome motions revealed with elastic network model
Authors:Wang Yongmei  Rader A J  Bahar Ivet  Jernigan Robert L
Institution:Department of Chemistry, University of Memphis, Memphis, TN 38152-3550, USA.
Abstract:The motions of large systems such as the ribosome are not fully accessible with conventional molecular simulations. A coarse-grained, less-than-atomic-detail model such as the anisotropic network model (ANM) is a convenient informative tool to study the cooperative motions of the ribosome. The motions of the small 30S subunit, the larger 50S subunit, and the entire 70S assembly of the two subunits have been analyzed using ANM. The lowest frequency collective modes predicted by ANM show that the 50S subunit and 30S subunit are strongly anti-correlated in the motion of the 70S assembly. A ratchet-like motion is observed that corresponds well to the experimentally reported ratchet motion. Other slow modes are also examined because of their potential links to the translocation steps in the ribosome. We identify several modes that may facilitate the E-tRNA exiting from the assembly. The A-site t-RNA and P-site t-RNA are found to be strongly coupled and positively correlated in these slow modes, suggesting that the translocations of these two t-RNAs occur simultaneously, while the motions of the E-site t-RNA are less correlated, and thus less likely to occur simultaneously. Overall the t-RNAs exhibit relatively large deformations. Animations of these slow modes of motion can be viewed at.
Keywords:Translocation  Dynamic transitions  Molecular machine  Global motion  Normal mode analysis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号