首页 | 本学科首页   官方微博 | 高级检索  
     


Quantification of isotope encoded proteins in 2-D gels using surface enhanced resonance Raman
Authors:Knudsen Giselle M  Davis Brandon M  Deb Shirshendu K  Loethen Yvette  Gudihal Ravindra  Perera Pradeep  Ben-Amotz Dor  Davisson V Jo
Affiliation:Department of Medicinal Chemistry, Bindley Bioscience Center at Discovery Park, Purdue University, West Lafayette, Indiana 47907, USA.
Abstract:A strategy for quantification of multiple protein isoforms from a complex sample background is demonstrated, combining isotopomeric rhodamine 6G (R6G) labels and surface-enhanced Raman in polyacrylamide matrix. The procedure involves isotope-encoding by lysine-labeling with (R6G) active ester reagents, isoform separation by 2-DGE, fluorescence quantification using internal standardization to water, and silver nanoparticle deposition followed by surface-enhanced Raman detection. R6G sample encoding and standardization enabled the determination of total protein concentration and the distribution of specific isoforms using the combined detection approach of water-referenced fluorescence spectral imaging and ratiometric quantification. A detection limit of approximately 13.5 picomolar R6G-labeled protein was determined for the surface-enhanced Raman in a gel matrix (15-fold lower than fluorescence). High quantification accuracies for small differences in protein populations at low nanogram abundance were demonstrated for human GMP synthetase (hGMPS) either as purified protein samples in a single-point determination mode (3% relative standard deviation, RSD%) or as HCT116 human cancer cellular lysate in an imaging application (with 16% RSD%). These results represent a prototype for future applications of isotopic surface-enhanced resonance Raman scatter to quantification of protein distributions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号