Acquisition of Fe from Various Natural Organic Matter Isolates by Aerobic Pseudomonad Bacteria |
| |
Authors: | Katherine C. Young Patricia A. Maurice Larry E. Hersman |
| |
Affiliation: | 1. Department of Civil Engineering and Geological Sciences , University of Notre Dame , Notre Dame , Indiana , USA;2. Life Sciences Division, Los Alamos National Laboratory , Los Alamos , New Mexico , USA |
| |
Abstract: | Iron (Fe) is an essential nutrient to most microorganisms. Aerobic microorganisms exhibit various strategies for acquiring Fe at near-neutral pH conditions, where Fe oxyhydroxides are insoluble. Although much research has focused on microbial acquisition of Fe from minerals, little is known about Fe acquisition from natural organic matter (NOM). Yet, in surface waters, soils and shallow sediments, Fe is often associated with natural organic matter (NOM), and this NOM-associated Fe could represent an important pool of Fe for microorganisms. Here, we investigated the growth of aerobic Pseudomonas mendocina on soil and surface water NOM samples containing Fe, under Fe-limited conditions. In the presence of NOM, bacteria grew to population sizes greater than in no-Fe-added controls, indicating that the bacteria were able to access Fe associated with NOM. Maximum population size correlated with the NOM-associated Fe concentration. In an additional experiment, Pseudomonas putida was able to acquire Fe from an NOM sample, demonstrating that this ability is not limited to P. mendocina. When Fe was added as 30 μ M FeEDTA plus NOM, together in the same reaction flasks, P. mendocina and P. putida growth was less than in the presence of 30 μM FeEDTA alone. The fact that Fe sources are not simply additive and that the presence of NOM inhibits growth in FeEDTA suggests that further study on the responses of bacteria to a combination of Fe sources is needed to understand the complexities of bacterial Fe acquisition in the subsurface. |
| |
Keywords: | bacteria biodegradation iron organic matter Pseudomonas |
|
|