首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of Biosignatures by Geomatrix-Assisted Laser Desorption/Ionization (GALDI) Mass Spectrometry
Authors:Beizhan Yan  Daphne L. Stoner  J. Michelle Kotler  Nancy W. Hinman  Jill R. Scott
Affiliation:1. Department of Chemistry , University of Idaho , Idaho Falls, Idaho, 83402, USA;2. Geosciences Department , University of Montana , Missoula, Montana, 59812, USA;3. Chemistry Department, Idaho National Laboratory , Idaho Falls, Idaho, 83415, USA
Abstract:Identification of mineral-associated biosignatures is of significance for retrieving biochemical information from geological records here on Earth and for detecting signs of life on other planets, such as Mars. An investigation using laser desorption Fourier transform mass spectrometry was conducted to determine whether geomatrix-assisted laser desorption/ionization (GALDI) can be used to detect amino acids (e.g., histidine, threonine, and cysteine) and small proteins (e.g., gramicidin S) associated with mineral phases and whether the geomatrix impacts detection. Iron oxide (Fe2 O 3 ) and sodium chloride (NaCl) were investigated as clean chemical analogues of hematite and halite, respectively, which have both been detected on the surface of Mars. Samples were prepared by 2 methods: (1) application of analyte solution to the geomatrix surface with subsequent drying; and (2) physical mixing of analyte and geomatrix. Amino acids incorporated within NaCl by physical mixing yielded a better signal-to-noise ratio than those that were applied to the surface of a NaCl pellet. The composition of the geomatrix had an influence on the detection of biomolecules. Peaks corresponding to the cation-attached biomolecular ions were observed for the NaCl prepared samples. However, no biomolecular ion species were observed in samples using Fe 2 O 3 as geomatrix. Instead, only minor peaks that may correspond to ions derived from fragments of the biomolecules were obtained.
Keywords:biosignature  geomatrix  hematite  evaporite  amino acid  GALDI  laser desorption  mass spectrometry  FTMS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号