首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Presynaptic GABAB Receptor Modulation of Glutamate Exocytosis from Rat Cerebrocortical Nerve Terminals: Receptor Decoupling by Protein Kinase C
Authors:Michael S Perkinton  Talvinder S Sihra
Institution:Department of Pharmacology, Royal Free Hospital School of Medicine, London, England
Abstract:Abstract: GABA and the GABAB receptor agonist (?)-baclofen inhibited 4-aminopyridine (4AP)- and KCl-evoked, Ca2+-dependent glutamate release from rat cerebrocortical synaptosomes. The GABAB receptor antagonist CGP 35348, prevented this inhibition of glutamate release, but phaclofen had no effect. (?)-Baclofen-mediated inhibition of glutamate release was insensitive to 2 µg/ml pertussis toxin. As determined by examining the mechanism of GABAB receptor modulation of glutamate release, (?)-baclofen caused a significant reduction in 4AP-evoked Ca2+ influx into synaptosomes. The agonist did not alter the resting synaptosomal membrane potential or 4AP-mediated depolarization; thus, the inhibition of Ca2+ influx could not be attributed to GABAB receptor activation causing a decrease in synaptosomal excitability. Ionomycin-mediated glutamate release was not affected by (?)-baclofen, indicating that GABAB receptors in this preparation are not coupled directly to the exocytotic machinery. Instead, the data invoke a direct coupling of GABAB receptors to voltage-dependent Ca2+ channels linked to glutamate release. This coupling was subject to regulation by protein kinase C (PKC), because (?)-baclofen-mediated inhibition of 4AP-evoked glutamate release was reversed when PKC was stimulated with phorbol ester. This may therefore represent a mechanism by which inhibitory and facilitatory presynaptic receptor inputs interplay to fine-tune transmitter release.
Keywords:Synaptosomes  GABAB receptor  Glutamate exocytosis  Ca2+ channels  (?)-Baclofen  Protein kinase C
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号