首页 | 本学科首页   官方微博 | 高级检索  
     


The use of lanthanum and cytochalasin B to study calcium effects on skeletal muscle differentiation in vitro
Authors:G E Morris
Abstract:A dual effect of external Ca2+ on creatine kinase (CPK) accumulation during myogenesis has recently been demonstrated (Morris and Cole, '79). Ca2+ inhibits muscle-specific CPK accumulation at intermediate (50–100 μ) concentrations compared with both lower (no added Ca2+) and higher (2–3 μ) concentrations. Myoblast fusion, however, requires high Ca2+ and is inhibited at both low and intermediate Ca2+ levels. These effects are now investigated further by studying the effects of lanthanum ion (La3+), which interferes with Ca2+-binding to membranes and Ca2+-transport, and cytochalasin B, which affects the cell membrane and prevents cell fusion without inhibiting CPK accumulation. The results show that low concentrations (10–100 μ) of La3+ inhibit the appearance of the muscle-specific (MM) CPK isoenzyme during myogenesis without significantly affecting cell fusion or intracellular cyclic AMP levels. Three further observations are consistent with the existence of myotube-specific membrane-binding sites for Ca2+, which are involved in the stimulation of CPK accumulation on increasing external Ca2+ from intermediate to high concentrations. (1) CPK levels are not affected by La3+ at 0–50 μ external Ca2+. (2) CPK levels in cytochalasin B treated myoblasts are hardly affected by La3+ at any Ca2+ concentration. (3) In cytochalasin B treated cultures, CPK levels are not increased by raising external Ca2+ from intermediate to high levels. In contrast, the stimulation of CPK accumulation on decreasing external Ca2+ from intermediate to very low concentrations is not affected by either La3+ or cytochalasin B. Some alternative interpretations of the data are also considered, including direct disruption of a membrane Ca2+-binding site by cytochalasin B.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号