首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thrombin regulates S-phase re-entry by cultured newt myotubes.
Authors:E M Tanaka  D N Drechsel  J P Brockes
Institution:Department of Biochemistry and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
Abstract:BACKGROUND: Adult urodele amphibians such as the newt have remarkable regenerative ability, and a critical aspect of this is the ability of differentiated cells to re-enter the cell cycle and lose their differentiated characteristics. Unlike mammalian myotubes, cultured newt myotubes are able to enter and traverse S phase, following serum stimulation, by a pathway leading to phosphorylation of the retinoblastoma protein. The extracellular regulation of this pathway is unknown. RESULTS: Like their mammalian counterparts, newt myotubes were refractory to mitogenic growth factors such as the platelet-derived growth factor (PDGF), which act on their mononucleate precursor cells. Cultured newt myotubes were activated to enter S phase by purified thrombin in the presence of subthreshold amounts of serum. The activation proceeded by an indirect mechanism in which thrombin cleaved components in serum to generate a ligand that acted directly on the myotubes. The ligand was identified as a second activity present in preparations of crude thrombin and that was active after removal of all thrombin activity. It induced newt myotubes to enter S phase in serum-free medium, and it acted on myotubes but not on the mononucleate precursor cells. Cultured mouse myotubes were refractory to this indirect mechanism of S-phase re-entry. CONCLUSIONS: These results provide a link between reversal of differentiation and the acute events of wound healing. The urodele myotube responds to a ligand generated downstream of thrombin activation and re-enters the cell cycle. Although this ligand can be generated in mammalian sera, the mammalian myotube is unresponsive. These results provide a model at the cellular level for the difference in regenerative ability between urodeles and mammals.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号