首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Significant qualitative differences exist between thyrotropin and prolactin secretory dynamics induced by pituitary cell swelling
Authors:X B Wang  N Sato  M A Greer  S E Greer  S McAdams
Institution:Department of Medicine, Oregon Health Sciences University, Portland 97201.
Abstract:Cell swelling produced by a variety of techniques is a potent stimulus intensity-related inducer of an immediate secretory burst of thyroid-stimulating hormone (TSH) and prolaction (PRL) secretion from anterior pituitary cells. A 2-min "square wave" exposure to either hyposmolarity or isotonic urea induced stimulus intensity-correlated TSH and PRL secretory bursts peaking within 3 min, but the PRL zenith occurred 1 min later than that of TSH. With continuous exposure to these stimuli, TSH secretion rapidly decreased and remained only slightly above the unstimulated rate after 5 min. PRL secretion fell to and remained below the unstimulated level after 10 min. After stopping the stimulus, another secretory burst ("off" response) occurred with PRL, but not with TSH. A progressive "ramp" increase in stimulus intensity over 18 min induced a corresponding gradual increase in TSH secretion; there was a progressive depression, rather than increase, in PRL secretion during the stimulus ramp, with an off response secretory burst when the stimulus was discontinued. Removal of extracellular Ca2+ or addition of verapamil to the medium did not alter the dynamics of hyposmolarity-induced TSH secretion, but markedly altered those of PRL secretion; there was no off response PRL secretion and a hyposmolar ramp induced a corresponding gradual increase in PRL secretion, with a return to baseline after removing the stimulus. The dramatic qualitative differences in the response of the thyrotroph and lactotroph may reflect differences between the cell types in the size of secretory vesicles, membrane potential, the mechanism of exocytosis, and/or the role of Ca2+ influx across the plasmalemma.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号