首页 | 本学科首页   官方微博 | 高级检索  
     


Mammalian housekeeping genes evolve more slowly than tissue-specific genes
Authors:Zhang Liqing  Li Wen-Hsiung
Affiliation:Department of Ecology and Evolution, University of Chicago, USA.
Abstract:Do housekeeping genes, which are turned on most of the time in almost every tissue, evolve more slowly than genes that are turned on only at specific developmental times or tissues? Recent large-scale gene expression studies enable us to have a better definition of housekeeping genes and to address the above question in detail. In this study, we examined 1581 human-mouse orthologous gene pairs for their patterns of sequence evolution, contrasting housekeeping genes with tissue-specific genes. Our results show that, in comparison to tissue-specific genes, housekeeping genes on average evolve more slowly and are under stronger selective constraints as reflected by significantly smaller values of Ka/Ks. Besides stronger purifying selection, we explored several other factors that can possibly slow down nonsynonymous rates in housekeeping genes. Although mutational bias might slightly slow the nonsynonymous rates in housekeeping genes, it is unlikely to be the major cause of the rate difference between the two types of genes. The codon usage pattern of housekeeping genes does not seem to differ from that of tissue-specific genes. Moreover, contrary to the old textbook concept, we found that approximately 74% of the housekeeping genes in our study belong to multigene families, not significantly different from that of the tissue-specific genes ( approximately 70%). Therefore, the stronger selective constraints on housekeeping genes are not due to a lower degree of genetic redundancy.
Keywords:synonymous rates    nonsynonymous rates    mutational bias    selective constraint    tissue-specific    and genetic redundancy
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号