首页 | 本学科首页   官方微博 | 高级检索  
     


Ca2+ signaling in human fetoplacental vasculature: effect of CGRP on umbilical vein smooth muscle cytosolic Ca2+ concentration
Authors:Dong Yuan-Lin  Vegiraju Sujatha  Yallampalli Chandrasekhar
Affiliation:Department of Obstetrics and Gynecology, Univ. of Texas Medical Branch, 301 Univ. Blvd., MRB 11.138, Galveston, TX 77555-1062, USA. ydong@utmb.edu
Abstract:CGRP is a potent vasodilator with increased levels in fetoplacental circulation during late pregnancy. We have recently demonstrated that acute CGRP exposure to fetoplacental vessels in vitro induced vascular relaxation, but the signaling pathway of CGRP in fetoplacental vasculature remains unclear. We hypothesized that CGRP relaxes fetoplacental vasculature via regulating smooth muscle cytosolic Ca2+ concentrations. In the present study, by using human umbilical vein smooth muscle (HUVS) cells (HUVS-112D), we examined CGRP receptors, cAMP generation, and changes in cellular Ca2+ concentrations on CGRP treatment. These cells express mRNA for CGRP receptor components, calcitonin receptor-like receptor, and receptor activity-modifying protein-1. Direct saturation binding for 125I-labeled CGRP to HUVS cells and Scatchard analysis indicate specificity of the receptors for CGRP [dissociation constant (K(D)) = 67 nM, maximum binding capcity (Bmax) = 2.7 pmol/million cells]. Exposure of HUVS cells to CGRP leads to a dose-dependent increase in intracellular cAMP accumulation, and this increase is prevented by CGRP antagonist CGRP(8-37). Using fura-2-loaded HUVS cells, we monitored the effects of CGRP on intracellular Ca2+ concentration ([Ca2+]i). In the presence of extracellular Ca2+, bradykinin (10(-6) M), a fetoplacental vasoconstrictor, increases HUVS cells [Ca2+]i concentration. CGRP (10(-8) M) abolishes bradykinin-induced [Ca2+]i elevation. When the cells were pretreated with glibenclamide, an ATP-sensitive potassium channel blocker, the CGRP actions on bradykinin-induced Ca2+ influx were profoundly inhibited. In the absence of extracellular Ca2+, CGRP (10(-8) M) attenuated the increase of [Ca2+]i induced by a sarcoplasmic reticulum Ca2+ pump ATPase inhibitor thapsigargin (10(-5) M). Furthermore, Rp-cAMPS, a cAMP-dependent protein kinase A inhibitor, blocks CGRP actions on thapsigargin-induced Ca2+ release from sarcoplasmic reticulum. Our results suggested that CGRP relaxes human fetoplacental vessels by not only inhibiting the influx of extracellular Ca2+ but also attenuating the release of intracellular Ca2+ from the sarcoplasmic reticulum, and these actions might be attributed to CGRP-induced intracellular cAMP accumulation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号