首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene
Authors:Lints R  Emmons S W
Institution:Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Abstract:We have investigated the mechanism that patterns dopamine expression among Caenorhabditis elegans male ray sensory neurons. Dopamine is expressed by the A-type sensory neurons in three out of the nine pairs of rays. We used expression of a tyrosine hydroxylase reporter transgene as well as direct assays for dopamine to study the genetic requirements for adoption of the dopaminergic cell fate. In loss-of-function mutants affecting a TGFbeta family signaling pathway, the DBL-1 pathway, dopaminergic identity is adopted irregularly by a wider subset of the rays. Ectopic expression of the pathway ligand, DBL-1, from a heat-shock-driven transgene results in adoption of dopaminergic identity by rays 3-9; rays 1 and 2 are refractory. The rays are therefore prepatterned with respect to their competence to be induced by a DBL-1 pathway signal. Temperature-shift experiments with a temperature-sensitive type II receptor mutant, as well as heat-shock induction experiments, show that the DBL-1 pathway acts during an interval that extends from two to one cell generation before ray neurons are born and begin to differentiate. In a mutant of the AbdominalB class Hox gene egl-5, rays that normally express EGL-5 do not adopt dopaminergic fate and cannot be induced to express DA when DBL-1 is provided by a heat-shock-driven dbl-1 transgene. Therefore, egl-5 is required for making a subset of rays capable of adopting dopaminergic identity, while the function of the DBL-1 pathway signal is to pattern the realization of this capability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号