首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging
Authors:Zhu Yi  Qiu Hongyu  Trzeciakowski Jerome P  Sun Zhe  Li Zhaohui  Hong Zhongkui  Hill Michael A  Hunter William C  Vatner Dorothy E  Vatner Stephen F  Meininger Gerald A
Institution:Dalton Cardiovascular Res Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA Department of Cell Biology and Molecular Medicine, UMDNJ-New Jersey Med School, Newark, NJ 07101, USA Department of Systems Biology and Translational Medicine, Texas A&M University, College Station, TX 88043, USA Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
Abstract:A spectral analysis approach was developed for detailed study of time‐resolved, dynamic changes in vascular smooth muscle cell (VSMC) elasticity and adhesion to identify differences in VSMC from young and aged monkeys. Atomic force microscopy (AFM) was used to measure Young’s modulus of elasticity and adhesion as assessed by fibronectin (FN) or anti‐beta 1 integrin interaction with the VSMC surface. Measurements demonstrated that VSMC cells from old vs. young monkeys had increased elasticity (21.6 kPa vs. 3.5 kPa or a 612% increase in elastic modulus) and adhesion (86 pN vs. 43 pN or a 200% increase in unbinding force). Spectral analysis identified three major frequency components in the temporal oscillation patterns for elasticity (ranging from 1.7 × 10?3 to 1.9 × 10?2 Hz in old and 8.4 × 10?4 to 1.5 × 10?2 Hz in young) and showed that the amplitude of oscillation was larger (P < 0.05) in old than in young at all frequencies. It was also observed that patterns of oscillation in the adhesion data were similar to the elasticity waveforms. Cell stiffness was reduced and the oscillations were inhibited by treatment with cytochalasin D, ML7 or blebbistatin indicating the involvement of actin–myosin‐driven processes. In conclusion, these data demonstrate the efficacy of time‐resolved analysis of AFM cell elasticity and adhesion measurements and that it provides a uniquely sensitive method to detect real‐time functional differences in biomechanical and adhesive properties of cells. The oscillatory behavior suggests that mechanisms governing elasticity and adhesion are coupled and affected differentially during aging, which may link these events to changes in vascular stiffness.
Keywords:atomic force microscopy  cytoskeleton  extracellular matrix adhesion  fibronectin  force measurement  integrins  mechanotransduction  vascular smooth muscle cell contractile function  Young’s modulus
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号