首页 | 本学科首页   官方微博 | 高级检索  
     


Subcellular distribution of the enzymes degrading thyrotropin releasing hormone and metabolites in rat brain
Affiliation:2. Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA;3. School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom;4. Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA;1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, PR China;2. Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
Abstract:In order to further understand the role of enzymes degrading Thyrotropin Releasing Hormone (TRH, pglu-his-proNH2) and metabolites, we studied their subcellular distribution in rat brain. Brain tissue was homogenized in 0.32 M sucrose, tris-HCl 0.01 M pH 7.4 and fractionated by differential and discontinuous gradient centrifugation; [3H]pro-TRH was incubated with the various subcellular fractions and the extent of degradation of each metabolite was measured after separation by thin layer chromatography. Several markers were simultaneously measured (lactate dehydrogenase, 5′-nucleotidase and hexosaminidase) to determine the pattern of distribution of the subcellular organelles. The post-proline cleaving enzyme responsible for pglu-his-pro formation and pyroglutamate amino-peptidase (which requires sulphydryl compounds for maximal activity) were found in cytosol but were barely detectable in the soluble component of synaptosomes; pyroglutamate aminopeptidase (dependent on metals) and post-proline dipeptidyl amino peptidase were found on the membranes of synaptosomes; imido peptidase was not enriched in any particular fraction.These data are consistent with the hypothesis that membrane-bound pyroglutamate aminopeptidase is responsible for TRH degradation once released into the synaptic cleft and that the post-proline dipeptidylaminopeptidase may participate in the extracellular catabolism of his-proNH2 before it cyclizes to his-pro-DKP. They also suggest that post-proline cleaving enzyme and soluble pyroglutamate aminopeptidase may not play an important role in the regulation of TRH levels in nerve endings.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号