首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Binding of Anti-GRP78 Autoantibodies to Cell Surface GRP78 Increases Tissue Factor Procoagulant Activity via the Release of Calcium from Endoplasmic Reticulum Stores
Authors:Ali A Al-Hashimi  Jennifer Caldwell  Mario Gonzalez-Gronow  Salvatore V Pizzo  Danya Aboumrad  Lindsay Pozza  Hiam Al-Bayati  Jeffrey I Weitz  Alan Stafford  Howard Chan  Anil Kapoor  Donald W Jacobsen  Jeffrey G Dickhout  Richard C Austin
Abstract:The increased risk of venous thromboembolism in cancer patients has been attributed to enhanced tissue factor (TF) procoagulant activity (PCA) on the surface of cancer cells. Recent studies have shown that TF PCA can be modulated by GRP78, an endoplasmic reticulum (ER)-resident molecular chaperone. In this study, we investigated the role of cell surface GRP78 in modulating TF PCA in several human cancer cell lines. Although both GRP78 and TF are present on the cell surface of cancer cells, there was no evidence of a stable interaction between recombinant human GRP78 and TF, nor was there any effect of exogenously added recombinant GRP78 on cell surface TF PCA. Treatment of cells with the ER stress-inducing agent thapsigargin, an inhibitor of the sarco(endo)plasmic reticulum Ca2+ pump that causes Ca2+ efflux from ER stores, increased cytosolic Ca2+] and induced TF PCA. Consistent with these findings, anti-GRP78 autoantibodies that were isolated from the serum of patients with prostate cancer and bind to a specific N-terminal epitope (Leu98–Leu115) on cell surface GRP78, caused a dose-dependent increase in cytosolic Ca2+] and enhanced TF PCA. The ability to interfere with cell surface GRP78 binding, block phospholipase C activity, sequester ER Ca2+, or prevent plasma membrane phosphatidylserine exposure resulted in a significant decrease in the TF PCA induced by anti-GRP78 autoantibodies. Taken together, these findings provide evidence that engagement of the anti-GRP78 autoantibodies with cell surface GRP78 increases TF PCA through a mechanism that involves the release of Ca2+ from ER stores. Furthermore, blocking GRP78 signaling on the surface of cancer cells attenuates TF PCA and has the potential to reduce the risk of cancer-related venous thromboembolism.
Keywords:Calcium  Calcium Intracellular Release  Cell Surface  ER Stress  Thrombosis  Tumor Metabolism  GRP78  Autoantibodies  Tissue Factor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号