Reactions of copper macrocycles with antioxidants and HOCl: potential for biological redox sensing |
| |
Authors: | Rebecca J. Sowden Katherine D. Trotter Lynsey Dunbar Gemma Craig Omer Erdemli Corinne M. Spickett John Reglinski |
| |
Affiliation: | 1. Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, 27 Taylor Street, Glasgow, G4 0NR, UK 2. Department of Pure and Applied Chemistry, Strathclyde University, 295 Cathedral Street, Glasgow, G1 1XL, UK 3. School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
|
| |
Abstract: | A series of simple copper N2S2 macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|