首页 | 本学科首页   官方微博 | 高级检索  
     


Amplicon Remodeling and Genomic Mutations Drive Population Dynamics after Segmental Amplification
Authors:Andrew B Morgenthaler  Ryan K Fritts  Shelley D Copley
Affiliation:Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Abstract:New enzymes often evolve by duplication and divergence of genes encoding enzymes with promiscuous activities that have become important in the face of environmental opportunities or challenges. Amplifications that increase the copy number of the gene under selection commonly amplify many surrounding genes. Extra copies of these coamplified genes must be removed, either during or after evolution of a new enzyme. Here we report that amplicon remodeling can begin even before mutations occur in the gene under selection. Amplicon remodeling and mutations elsewhere in the genome that indirectly increase fitness result in complex population dynamics, leading to emergence of clones that have improved fitness by different mechanisms. In this work, one of the two most successful clones had undergone two episodes of amplicon remodeling, leaving only four coamplified genes surrounding the gene under selection. Amplicon remodeling in the other clone resulted in removal of 111 genes from the genome, an acceptable solution under these selection conditions, but one that would certainly impair fitness under other environmental conditions.
Keywords:gene duplication and divergence   amplicon remodeling   molecular evolution   ProA
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号