首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spatial scaling in a benthic population model with density-dependent disturbance.
Authors:M Pascual  S A Levin
Institution:Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA.
Abstract:This work investigates approaches to simplifying individual-based models in which the rate of disturbance depends on local densities. To this purpose, an individual-based model for a benthic population is developed that is both spatial and stochastic. With this model, three possible ways of approximating the dynamics of mean numbers are examined: a mean-field approximation that ignores space completely, a second-order approximation that represents spatial variation in terms of variances and covariances, and a patch-based approximation that retains information about the age structure of the patch population. Results show that space is important and that a temporal model relying on mean disturbance rates provides a poor approximation to the dynamics of mean numbers. It is possible, however, to represent relevant spatial variation with second-order moments, particularly when recruitment rates are low and/or when disturbances are large and weak. Even better approximations are obtained by retaining patch age information.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号