首页 | 本学科首页   官方微博 | 高级检索  
     


muI Na+ channels expressed transiently in human embryonic kidney cells: biochemical and biophysical properties.
Authors:C Ukomadu  J Zhou  F J Sigworth  W S Agnew
Affiliation:Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510.
Abstract:We describe the transient expression of the rat skeletal muscle muI Na+ channel in human embryonic kidney (HEK 293) cells. Functional channels appear at a density of approximately 30 in a 10 microns 2 patch, comparable to those of native excitable cells. Unlike muI currents in oocytes, inactivation gating is predominantly (approximately 97%) fast, although clear evidence is provided for noninactivating gating modes, which have been linked to anomalous behavior in the inherited disorder hyperkalemic periodic paralysis. Sequence-specific antibodies detect a approximately 230 kd glycopeptide. The majority of molecules acquire only neutral oligosaccharides and are retained within the cell. Electrophoretic mobility on SDS gels suggests the molecules may acquire covalently attached lipid. The channel is readily phosphorylated by activation of the protein kinase A and protein kinase C second messenger pathways.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号