首页 | 本学科首页   官方微博 | 高级检索  
     


IGF-I and branchial IGF receptor expression and localization during salinity acclimation in striped bass
Authors:Tipsmark Christian Kølbaek  Luckenbach John Adam  Madsen Steffen Søndergaard  Borski Russell John
Affiliation:Department of Zoology, North Carolina State University, Raleigh, North Carolina, USA. ckt@biology.sdu.dk
Abstract:The initial response of the IGF-I system and the expression and cellular localization of IGF type-I receptor (IGF-IR) were studied in the gill of a euryhaline teleost during salinity acclimation. Exposure of striped bass (Morone saxatilis) to hyperosmotic and hypoosmotic challenges induced small, transitory (<24 h) deflections in hydromineral balance. Transfer from freshwater (FW) to seawater (SW) induced an initial decrease in plasma IGF-I levels after 24 h in both fed and fasted fish. There was an overall decrease in liver IGF-I mRNA levels after SW transfer, suggesting that decreased plasma levels may be due to a decline in hepatic IGF-I synthesis. No changes were observed in gill IGF-I mRNA, but SW transfer induced an increase in gill IGF-IR mRNA after 24 h. Transfer from SW to FW induced an increase in plasma IGF-I levels in fasted fish. In fed fish, no significant changes were observed in either plasma IGF-I, liver, or gill IGF-I mRNA, or gill IGF-IR mRNA levels. In a separate experiment, FW-acclimated fish were injected with saline or IGF-I prior to a 24-h SW challenge. Rapid regain of osmotic balance following SW transfer was hindered by IGF-I. Immunohistochemistry revealed for the first time in teleosts that IGF-IR and Na(+)-K(+)-ATPase are localized in putative chloride cells at the base of the lamellae, identifying these cells in the gill as a target for IGF-I and IGF-II. Overall the data suggest a hyperosmoregulatory role of IGF-I in this species.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号