首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of ATP translocation on citrulline and oxaloacetate synthesis by isolated rat liver mitochondria.
Authors:L Raijman  T Bartulis
Institution:Department of Biochemistry, University of Southern California, School of Medicine, 2025 Zonal Avenue, Los Angeles, California 90033 U.S.A.
Abstract:The possibility that the availability of ATP may affect the rate of synthesis of carbamoyl phosphate (measured as citrulline) by carbamoyl phosphate synthase (ammonia) was studied using respiring isolated rat liver mitochondria incubated with added ADP, with hexokinase, glucose, and ATP, or with atractylate, in order to enhance or prevent the efflux of mitochondrial ATP. The effects of these agents were compared with those on oxaloacetate synthesis from pyruvate. Addition of hexokinase, glucose, and ATP to isolated mitochondria resulted in an inhibition of citrulline synthesis which was proportional to the amounts of glucose 6-phosphate formed; under these conditions, matrix ATP and ATP/ADP tended to decrease. The addition of increasing amounts of ADP also resulted in proportional inhibition of citrulline synthesis, but in this case the matrix content of ATP and ADP increased, and ATP/ADP decreased very slightly. In the presence of atractylate, citrulline synthesis was maximal despite a 30% decrease in matrix ATP and ATP/ADP. These effects were observed whether pyruvate, succinate, glutamate, or β-OH-butyrate was used as the respiratory substrate. ADP, the hexokinase system, and atractylate had qualitatively similar but much less pronounced effects on oxaloacetate synthesis from pyruvate. Within the limits of variation observed in these experiments, the rate of synthesis of citrulline appears not to be affected by the matrix content of total ATP, total ADP, or by ATP/ADP. It is affected, however, by the velocity of translocation of ATP into the extramitochondrial medium. These findings suggest that carbamoyl phosphate synthase (ammonia) may be loosely associated with the mitochondrial inner membrane, and may compete for ATP with the ATP-ADP translocator to an extent determined by the extramitochondrial demands for ATP.
Keywords:To whom correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号