首页 | 本学科首页   官方微博 | 高级检索  
     


The properties of hybrid F1-ATPase enzymes suggest that a cyclical catalytic mechanism involving three catalytic sites occurs
Authors:R Rao  A E Senior
Affiliation:Department of Biochemistry, University of Rochester Medical Center, New York 14642.
Abstract:Maximal rates of ATP hydrolysis catalyzed by F1-ATPase enzymes are known to involve strong positive catalytic site cooperativity. There are three potential catalytic nucleotide-binding sites on F1. Two important and unanswered questions are (i) whether all three potential catalytic sites must interact cooperatively to yield maximal rates of ATP hydrolysis and (ii) whether a cyclical three-site mechanism operates as suggested by several authors. We have studied these two questions here by measuring the ATPase activities of hybrid enzymes containing normal beta-, gamma-, delta-, and epsilon-subunits together with different combinations of mutant and normal alpha-subunits. The mutant alpha-subunits were derived from uncA401, uncA447, and uncA453 mutant E. coli F1-ATPase, in which positive cooperativity between catalytic sites is strongly attenuated by defined mis-sense mutations. Our data show that three normal catalytic sites are required to interact in order to achieve maximal ATPase rates and suggest that a cyclical mechanism does operate. Hybrid enzyme containing one-third mutant alpha-subunit and two-thirds normal alpha-subunits had substantial but submaximal activity, showing that cooperativity between three sites in a noncyclical fashion, or between pairs of sites, can achieve effective catalysis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号