首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism and Mechanism-Based Inactivation of 4-Hydroxyphenylpyruvate Dioxygenase
Authors:Forbes B. J. R.  Gordon G. A.
Abstract:Six substrate analogs of 4-hydroxyphenylpyruvate, specifically pentafluorophenylpyruvate, 4-hydroxytetrafluorophenylpyruvate,2-thienylpyruvate, 3-thienylpyruvate, thiophenol oxalate, and p-thiocresoloxalate were synthesized and their interactions with porcine liver 4-hydroxyphenylpyruvate dioxygenase investigated. Both pentafluorophenylpyruvate and thiophenol oxalate are competitive inhibitors of the enzyme with KI values of 14 and 150 μM, respectively, but p-thiocresol oxalate has no effect on the enzymic activity. The other three substrate analogs are both substrates and mechanism-based inactivators of the enzyme with the following kinetic characteristics (compound, Km, Vmax, kinact, K′, partition ratio) at pH 6.0, 37°C, and an air atmosphere: 4-hydroxytetrafluorophenylpyruvate, 50 μM, 1.9 mkat/kg, 1.5/min, 70 μM 4.2; 2-thienylpyruvate, 500 μM, 7.8 mkat/kg, 0.6/min, 400 μM, 41; 3-thienylpymvate, 250 μM, 2 9 mkat/kg, 0.6/min, 300 μM, 22. When inactivated, the dioxygenase was found to contain per mole of active enzyme, 0.78 mol of label from 3-thienyl-3[3H]pyruvate and 0.85 mol of label from 4-hydroxytetrafluorophenyl-3 [3H]pyruvate. The product formed from the enzyme-catalyzed oxidation of 3-thienylpyruvate was determined to be 3-carboxymethyl-3-thiolene-2-one. The implication of these results to the mechanism of the dioxygenase is considered,
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号