首页 | 本学科首页   官方微博 | 高级检索  
     


Encoded metal nanoparticle-based molecular beacons for multiplexed detection of DNA
Authors:Michael Y. Sha  Mark Yamanaka  Ian D. Walton  Scott M. Norton  Rebecca L. Stoermer  Christine D. Keating  Michael J. Natan  Sharron G. Penn
Affiliation:(1) Nanoplex Technologies, Inc., 665 Clyde Avenue, 94043 Mountain View, CA;(2) Department of Chemistry, Penn State University, PA
Abstract:In this paper we describe a molecular beacon format assay in which encoded nanowire particles are used to achieve multiplexing. We demonstrate this principle with the detection of five viral pathogens; Hepatitis A virus, Hepatitis C virus, West Nile Virus, Human Immune Deficiency virus and Severe Acute Respiratory Syndrome virus. Oligonucleotides are designed complementary to a target sequence of interest containing a 3′ universal fluorescence dye. A 5′ thiol causes the oligonucleotides to self-assemble onto the metal nanowire. The single-stranded oligonucleotide contains a self-complementary hairpin stem sequence of 10 bases that forces the 3′ fluorophore to come into contact with the metallic nanowire surface, thereby quenching the fluorescence. Upon addition of target DNA, there is hybridization with the complementary oligonucleotides. The resulting DNA hybrid is rigid, unfolds the hairpin structure, and causes the fluorophore to be moved away from the surface such that it is no longer quenched. By using differently encoded nanowires, each conjugated with a different oligonucleotide sequence, multiplexed DNA assays are possible using a single fluorophore, from a multiplexed RT-PCR reaction.
Keywords:Multiplex  molecular beacon  RNA detection  pathogen  encoded  nanotechnology  nanowire
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号