首页 | 本学科首页   官方微博 | 高级检索  
     


Heterologous expression of Hp BHY and Cr BKT increases heat tolerance in Physcomitrella patens
Authors:Jianfang He  Ping Li  Heqiang Huo  Lina Liu  Ting Tang  Mingxia He  Junchao Huang  Li Liu
Affiliation:Key Laboratory of Economic Plants and Biotechnology;University of Chinese Academy of Sciences;Mid-Florida Research and Education Center
Abstract:Heat stress can restrict plant growth, development, and crop yield. As essential plant antioxidants, carotenoids play significant roles in plant stress resistance. b-carotene hydroxylase(BHY) and b-carotene ketolase(BKT), which catalyze the conversions of b-carotene to zeaxanthin and b-carotene to canthaxanthin, respectively, are key enzymes in the carotenoid biosynthetic pathway, but little is known about their potential functions in stress resistance. Here, we investigated the roles of b-carotene hydroxylase and b-carotene ketolase during heat stress in Physcomitrella patens through expressing a b-carotene ketolase gene from Chlamydomonas reinhardtii(Cr BKT) and a b-carotene hydroxylase gene from Haematococcus pluvialis(Hp BHY) in the moss P. patens. In transgenic moss expressing these genes, carotenoids content increased(especially lutein content), and heat stress tolerance increased, with reduced leafy tissue necrosis. To investigate the mechanism of this heat stress resistance, we measured various physiological indicators and found a lower malondialdehyde level, higher peroxidase and superoxide dismutase activities, and higher endogenous abscisic acid and salicylate content in the transgenic plants in response to high-temperature stress. These results demonstrate that Cr BKT and Hp BHY increase plant heat stress resistance through the antioxidant and damage repair metabolism, which is related to abscisic acid and salicylate signaling.
Keywords:Carotenoids  Heat stress  Antioxidant  Abscisic acid  Physcomitrella patens
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号