首页 | 本学科首页   官方微博 | 高级检索  
     


Electromechanical model for object roughness perception during finger sliding
Affiliation:1. CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
Abstract:Touch allows us to gather abundant information in the world around us. However, how sensory cells embedded in the fingers convey texture information into their firing patterns is still poorly understood. Here, we develop an electromechanical model for roughness perception by incorporating main ingredients such as voltage-gated ion channels, active ion pumps, mechanosensitive channels, and cell deformation. The model reveals that sensory cells can convey texture wavelengths into the period of their firing patterns as the finger slides across object surfaces, but they can only convey a limited range of texture wavelengths. We also show that an increase in sliding speed broadens the decoding wavelength range at the cost of reduction of lower perception limits. Thus, a smaller sliding speed and a bigger contact force may be needed to successfully discern a smooth surface, consistent with previous psychophysical observations. Moreover, we show that cells with slowly adapting mechanosensitive channels can still fire action potentials under static loadings, indicating that slowly adapting mechanosensitive channels may contribute to the perception of coarse textures under static touch. Our work thus provides a new theoretical framework to study roughness perception and may have important implications for the design of electronic skin, artificial touch, and haptic interfaces.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号