首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spatial configuration of charge and hydrophobicity tune particle transport through mucus
Institution:1. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts;2. Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts;3. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts;4. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
Abstract:Mucus is a selectively permeable hydrogel that protects wet epithelia from pathogen invasion and poses a barrier to drug delivery. Determining the parameters of a particle that promote or prevent passage through mucus is critical, as it will enable predictions about the mucosal passage of pathogens and inform the design of therapeutics. The effect of particle net charge and size on mucosal transport has been characterized using simple model particles; however, predictions of mucosal passage remain challenging. Here, we utilize rationally designed peptides to examine the integrated contributions of charge, hydrophobicity, and spatial configuration on mucosal transport. We find that net charge does not entirely predict transport. Specifically, for cationic peptides, the inclusion of hydrophobic residues and the position of charged and hydrophobic residues within the peptide impact mucosal transport. We have developed a simple model of mucosal transport that predicts how previously unexplored amino acid sequences achieve slow versus fast passage through mucus. This model may be used as a basis to predict transport behavior of natural peptide-based particles, such as antimicrobial peptides or viruses, and assist in the engineering of synthetic sequences with desired transport properties.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号