首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural foundations for explaining the physiological roles of murzymes embedded in diverse phospholipid membranes
Institution:Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Shoranur-2 (PO), Kerala 679122, India
Abstract:The advent of improved structural biology protocols and bioinformatics methodologies have provided paradigm-shifting insights on metabolic or physiological processes catalyzed by homo?/hetero- proteins (super)complexes embedded in phospholipid membranes of cells/organelles. In this panoramic review, we succinctly elucidate the structural features of select redox proteins from four systems: hepatocyte/adrenal cortex endoplasmic reticulum (microsomes), inner mitochondrial membrane (cristae), thylakoid membrane (grana), and in the flattened disks of rod/cone cells (in retina). Besides catalyzing fast/crucial (photo)chemical reactions, these proteins utilize the redox-active diatomic gaseous molecule of oxygen, the elixir of aerobic life. Quite contrary to extant perceptions that invoke primarily deterministic affinity-binding or conformation-change based “proton-pump”/“serial electron-relay” type roles, we advocate murzyme functions for the membrane-embedded proteins in these systems. Murzymes are proteins that generate/stabilize/utilize diffusible reactive (oxygen) species (DRS/DROS) based activities. Herein, we present a brief compendium of the recently revealed wealth of structural information and mechanistic concepts on how the membrane proteins use DRS/DROS to aid ‘effective charge separation’ and facilitate trans-membrane dynamics of diverse species in milieu, thereby enabling the cells to function as ‘simple chemical engines’.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号