首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cu(ii)- and disulfide bonds-induced stabilization during the guanidine hydrochloride- and thermal-induced denaturation of NAD-glycohydrolase from the venom of Agkistrodon acutus
Authors:Zhang Liyun  Xu Xiaolong  Luo Zhaofeng  Zhang Yan  Shen Dengke  Peng Lili  Song Jiajia
Institution:Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
Abstract:NAD-glycohydrolase (AA-NADase) from Agkistrodon acutus venom is a unique multicatalytic enzyme with both NADase and AT(D)Pase-like activities. Among all identified NADases, only AA-NADase is a disulfide-linked dimer and contains Cu(2+). Cu(2+) and disulfide bonds are essential for its multicatalytic activity. In this study, the effects of Cu(2+) and disulfide-bonds on guanidine hydrochloride (GdnHCl)- and thermal-induced unfolding of AA-NADase have been investigated by fluorescence, circular dichroism (CD) and differential scanning calorimetry (DSC). Cu(2+) and disulfide bonds not only increase the free energy change during the GdnHCl-induced unfolding as determined by fluorescence, but also increase the overall enthalpy change and the transition temperature during the thermal-induced unfolding as determined by CD and DSC. The slope of the GdnHCl-induced unfolding curve at its midpoint and the heat capacity of thermal-induced unfolding are slightly affected by Cu(2+) but significantly decrease after reduction of three disulfide-bonds. This work suggests that Cu(2+) stabilizes the folded state by increasing the enthalpy of unfolding, while disulfide-bonds stabilize the folded state by increasing the enthalpy of unfolding and stabilizing the packing of hydrophobic residues. Thus both Cu(2+) and disulfide bonds play a structural role in its multicatalytic activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号