Abstract: | The clustered, regularly‐interspaced, short palindromic repeat (CRISPR)‐associated nuclease 9 (CRISPR/Cas9) is emerging as a promising genome‐editing tool for treating diseases in a precise way, and has been applied to a wide range of research in the areas of biology, genetics, and medicine. Delivery of therapeutic genome‐editing agents provides a promising platform for the treatment of genetic disorders. Although viral vectors are widely used to deliver CRISPR/Cas9 elements with high efficiency, they suffer from several drawbacks, such as mutagenesis, immunogenicity, and off‐target effects. Recently, non‐viral vectors have emerged as another class of delivery carriers in terms of their safety, simplicity, and flexibility. In this review, we discuss the modes of CRISPR/Cas9 delivery, the barriers to the delivery process and the application of CRISPR/Cas9 system for the treatment of genetic disorders. We also highlight several representative types of non‐viral vectors, including polymers, liposomes, cell‐penetrating peptides, and other synthetic vectors, for the therapeutic delivery of CRISPR/Cas9 system. The applications of CRISPR/Cas9 in treating genetic disorders mediated by the non‐viral vectors are also discussed. |