首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spatially resolved diffuse imaging for high‐speed depth estimation of jet injection
Authors:Kieran A Brennan  Bryan P Ruddy  Poul M F Nielsen  Andrew J Taberner
Abstract:We investigate the use of spatially resolved diffuse imaging to track a fluid jet delivered at high speed into skin tissue. A jet injector with a short needle to deliver drugs beneath the dermis, is modified to incorporate a laser beam into the jet, which is ejected into ex vivo porcine tissue. The diffuse light emitted from the side and top of the tissue sample is recorded using high‐speed videography. Similar experiments, using a depth‐controlled fiber optic source, generate a reference dataset. The side light distribution is related to source depth for the controlled‐source experiments and used to track the effective source depth of the injections. Postinjection X‐ray images show agreement between the jet penetration and ultimate light source depth. The surface light intensity profile is parameterized with a single parameter and an exponential function is used to relate this parameter to source depth for the controlled‐source data. This empirical model is then used to estimate the effective source depth from the surface profile of the injection experiments. The depth estimates for injections into fat remain close to the side depth estimates, with a root‐mean‐square error of 1.1 mm, up to a source depth of 8 mm. image
Keywords:cutaneous administration  diffuse imaging  jet injection  scattering  transdermal drug delivery
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号