首页 | 本学科首页   官方微博 | 高级检索  
     


Quantification of collagen fiber structure using second harmonic generation imaging and two‐dimensional discrete Fourier transform analysis: Application to the human optic nerve head
Authors:Jacek K. Pijanka  Petar P. Markov  Dan Midgett  Neil G. Paterson  Nick White  Emma J. Blain  Thao D. Nguyen  Harry A. Quigley  Craig Boote
Abstract:Second harmonic generation (SHG) microscopy is widely used to image collagen fiber microarchitecture due to its high spatial resolution, optical sectioning capabilities and relatively nondestructive sample preparation. Quantification of SHG images requires sensitive methods to capture fiber alignment. This article presents a two‐dimensional discrete Fourier transform (DFT)–based method for collagen fiber structure analysis from SHG images. The method includes integrated periodicity plus smooth image decomposition for correction of DFT edge discontinuity artefact, avoiding the loss of peripheral image data encountered with more commonly used windowing methods. Outputted parameters are as follows: the collagen fiber orientation distribution, aligned collagen content and the degree of collagen fiber dispersion along the principal orientation. We demonstrate its application to determine collagen microstructure in the human optic nerve head, showing its capability to accurately capture characteristic structural features including radial fiber alignment in the innermost layers of the bounding sclera and a circumferential collagen ring in the mid‐stromal tissue. Higher spatial resolution rendering of individual lamina cribrosa beams within the nerve head is also demonstrated. Validation of the method is provided in the form of correlative results from wide‐angle X‐ray scattering and application of the presented method to other fibrous tissues. image
Keywords:collagen fiber structure  discrete Fourier transform  edge effect artefact correction  nonlinear microscopy  optic nerve head  second harmonic generation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号