首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Danthron Triggers ROS and Mitochondria-Mediated Apoptotic Death in C6 Rat Glioma Cells Through Caspase Cascades, Apoptosis-Inducing Factor and Endonuclease G Multiple Signaling
Authors:Shang-Ming Chiou  Chiz-Hao Chiu  Su-Tso Yang  Jai-Sing Yang  Hui-Ying Huang  Chao-Lin Kuo  Po-Yuan Chen  Jing-Gung Chung
Institution:Department of Functional Neurosurgery, Gamma Knife Center, China Medical University Hospital, Taichung 404, Taiwan.
Abstract:This research focused on the induction of cytotoxic effects by danthron, a natural anthraquinone derivative on C6 rat glioma cells through exploring the means of cell death and the effects on mitochondrial function. We found that danthron decreased the percentage of viable C6 cells and induced cell morphological changes in a dose-and time-dependent manner. The morphological and nuclei changes (DAPI staining) in C6 cells were observed using a contrast-microscope and fluorescence microscopy, respectively. The results suggest that cell death of C6 cells which are induced by danthron is closely related to apoptotic death. Danthron decreased the level of mitochondrial membrane potential (ΔΨ( m )), stimulated the release of cytochrome c from mitochondria to cytosol and promoted the levels of caspase-9 and caspase-3, or induced the release of AIF and Endo G from mitochondria. Based on both observations, we suggest that the danthron-provoked apoptotic death of C6 cells is mediated through the mitochondria-dependent pathway. Furthermore, our results also indicated that danthron triggered apoptosis through reactive oxygen species (ROS) production which were increased after 1 h exposure of danthron, which was reversed by the ROS scavenger N-acetyl-L: -cysteine (NAC). As a consequence, danthron-mediated cell death of C6 cells via ROS production, mitochondrial transmembrane potential collapse and releases of cytochrome c, AIF and Endo G. Taken together, danthron was demonstrated to be effective in killing C6 rat glioma cells via the ROS-promoted and mitochondria-dependent apoptotic pathways.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号