首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pom1 gradient buffering through intermolecular auto‐phosphorylation
Authors:Sascha Dalessi  Pranav Ullal  Payal Bhatia  Sophie G Martin
Institution:1. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland;2. Swiss Institute of Bioinformatics, Lausanne, Switzerland;3. Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
Abstract:Concentration gradients provide spatial information for tissue patterning and cell organization, and their robustness under natural fluctuations is an evolutionary advantage. In rod‐shaped Schizosaccharomyces pombe cells, the DYRK‐family kinase Pom1 gradients control cell division timing and placement. Upon dephosphorylation by a Tea4‐phosphatase complex, Pom1 associates with the plasma membrane at cell poles, where it diffuses and detaches upon auto‐phosphorylation. Here, we demonstrate that Pom1 auto‐phosphorylates intermolecularly, both in vitro and in vivo, which confers robustness to the gradient. Quantitative imaging reveals this robustness through two system's properties: The Pom1 gradient amplitude is inversely correlated with its decay length and is buffered against fluctuations in Tea4 levels. A theoretical model of Pom1 gradient formation through intermolecular auto‐phosphorylation predicts both properties qualitatively and quantitatively. This provides a telling example where gradient robustness through super‐linear decay, a principle hypothesized a decade ago, is achieved through autocatalysis. Concentration‐dependent autocatalysis may be a widely used simple feedback to buffer biological activities.
Keywords:auto‐catalysis  cell cycle control  fission yeast Schizosaccharomyces pombe  gradient formation  robustness
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号