首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutation at Glu23 eliminates the neuron growth inhibitory activity of human metallothionein-3
Authors:Ding Zhi-Chun  Teng Xin-Chen  Cai Bin  Wang Hui  Zheng Qi  Wang Yang  Zhou Guo-Ming  Zhang Ming-Jie  Wu Hou-Ming  Sun Hong-Zhe  Huang Zhong-Xian
Institution:Chemical Biology Lab, Department of Chemistry, Fudan University, Shanghai 200433, China.
Abstract:Human metallothionein-3 (hMT3), first isolated and identified as a neuronal growth inhibitory factor (GIF), is a metalloprotein expressed predominantly in brain. However, until now, the exact mechanism of the bioactivity of hMT3 is still unknown. In order to study the influence of acid-base catalysis on S-nitrosylation of hMT3, we constructed the E23K mutant of hMT3. During the course of bioassay, we found out unexpectedly that mutation at E23 of hMT3 eliminates the neuronal growth inhibitory activity completely. To the best of our knowledge, it is the first report that other residues, besides the TCPCP motif, in the beta-domain can alter the bioactivity of hMT3. In order to figure out the causes for the loss of bioactivity of the E23K mutant, the biochemical properties were characterized by UV-vis spectroscopy, CD spectroscopy, pH titration, DTNB reaction, EDTA reaction, and SNOC reaction. All data demonstrated that stability of the metal-thiolate cluster and overall structure of the E23K mutant were not altered too much. However, the reaction of the E23K mutant with SNOC exhibited biphasic kinetics and the mutant protein released zinc ions much faster than hMT3 in the initial step, while hMT3 exhibited single kinetic process. The 2D 1H-15N] HSQC was also employed to characterize structural changes during the reaction of hMT3 with varying mounts of nitric oxide. It was shown that the resonance of Glu23 disappeared at a molar ratio of NO to protein of 4. Based on these results, we suggest that mutation at Glu23 may alter the NO metabolism and/or affect zinc homeostasis in brain, thus altering the neuronal growth inhibitory activity.
Keywords:Human metallothionein-3  Neuron growth inhibitory factor  Mutants  S-Nitrosylation  NMR  Cell culture assay
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号