Effects of ischemia and myogenic activity on active and passive mechanical properties of rat cerebral arteries |
| |
Authors: | Coulson Rebecca J Chesler Naomi C Vitullo Lisa Cipolla Marilyn J |
| |
Affiliation: | Department of Mechanical Engineering and Department of Neurology, The University of Vermont, Burlington 05405, USA. |
| |
Abstract: | Passive (papaverine induced) and active (spontaneous pressure induced) biomechanical properties of ischemic and nonischemic rat middle cerebral arteries (MCAs) were studied under pressurized conditions in vitro. Ischemic (1 h of occlusion), contralateral, and sham-operated control MCAs were isolated from male Wistar rats (n = 22) and pressurized using an arteriograph system that allowed control of transmural pressure (TMP) and measurement of lumen diameter and wall thickness. Three mechanical stiffness parameters were computed: overall passive stiffness (beta), pressure-dependent modulus changes (E(inc,p)), and smooth muscle cell (SMC) activity-dependent changes (E(inc,a)). The beta-value for ischemic vessels was increased compared with sham vessels (13.9 +/- 1.7 vs. 9.1 +/- 1.4, P < 0.05), indicating possible short-term remodeling due to ischemia. E(inc,p) increased with pressure in the passive vessels (P < 0.05) but remained relatively constant in the active vessels for all vessel types, indicating that pressure-induced SMC contractile activity (i.e., myogenic reactivity) in cerebral arteries leads to the maintenance of a constant elastic modulus within the autoregulatory pressure range. E(inc,a) increased with pressure for all conditions, signifying that changes in stiffness are influenced by SMC activity and vascular tone. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|