首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Matrix remodeling in experimental and human heart failure: a possible regulatory role for TIMP-3
Authors:Fedak Paul W M  Altamentova Svetlana M  Weisel Richard D  Nili Nafiseh  Ohno Nobuhisa  Verma Subodh  Lee Tsu-Yee J  Kiani Chris  Mickle Donald A G  Strauss Bradley H  Li Ren-Ke
Institution:Division of Cardiac Surgery, Toronto General Research Institute, University of Toronto, Toronto General Hospital, Ontario, Canada M5B 1W8.
Abstract:In the failing heart, an imbalance in matrix metalloproteinases (MMPs) and their biological regulators, the tissue inhibitors of MMPs (TIMPs), may result in cardiac dilatation from matrix degradation. We hypothesized that a reduction of myocardial TIMP-3 is associated with adverse matrix remodeling in both human and experimental heart failure. Cardiomyopathic hamsters at age 15 wk (normal), 25 wk (compensated stage), and 35 wk (overt failure) were compared with age-matched normal controls. MMP activity (gelatinase bioassay) was increased in cardiomyopathic hearts (P = 0.03) and peaked during the transition to overt heart failure. TIMP-3 content (immunoblot) was decreased compared with normal controls (74 +/- 5% at 25 wk, 69 +/- 10% at 35 wk; P = 0.001) and its reduction was associated with increased MMP activity (r = -0.6; P = 0.004). TIMP-1 increased progressively (P = 0.001), whereas TIMP-2, TIMP-4, and MMP protein levels were unchanged. Myocardial collagen (hydroxyproline content) increased with time during the progression to end-stage cardiac failure (P < 0.0001). Collagen synthesis ((14)C]proline uptake) was elevated in cardiomyopathy at 15 and 25 wk (P < 0.05). The collagen cross-linking ratio (insoluble:soluble collagen) was reduced (P = 0.003) as the left ventricle dilated. By confocal microscopy restricted to viable myocardium, collagen content was reduced (P = 0.04) with fragmentation (P < 0.0001) and thinning (P = 0.003) of perimysial collagen fibers. Similarly, patients with end-stage congestive heart failure (n = 7) compared with nonfailing controls (n = 2) had elevated gelatinase MMP activity (P = 0.02) associated with isolated reductions in TIMP-3 (55 +/- 5% of normal; P = 0.003). Reductions of TIMP-3 parallel adverse matrix remodeling in the cardiomyopathic hamster and the failing human heart. TIMP-3 may contribute to the regulation of myocardial remodeling and its reduction may promote a transition from compensated to end-stage congestive heart failure.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号