首页 | 本学科首页   官方微博 | 高级检索  
   检索      


K‐Ion Storage Enhancement in Sb2O3/Reduced Graphene Oxide Using Ether‐Based Electrolyte
Authors:Jinliang Li  Ning Zhuang  Junpeng Xie  Xiaodan Li  Wenchen Zhuo  Hao Wang  Jong Beom Na  Xibo Li  Yusuke Yamauchi  Wenjie Mai
Abstract:In this work, an ether‐based electrolyte is adopted instead of conventional ester‐based electrolyte for an Sb2O3‐based anode and its enhancement mechanism is unveiled for K‐ion storage. The anode is fabricated by anchoring Sb2O3 onto reduced graphene oxide (Sb2O3‐RGO) and it exhibits better electrochemical performance using an ether‐based electrolyte than that using a conventional ester‐based electrolyte. By optimizing the concentration of the electrolyte, the Sb2O3‐RGO composite delivers a reversible specific capacity of 309 mAh g?1 after 100 cycles at 100 mA g?1. A high specific capacity of 201 mAh g?1 still remains after 3300 cycles (111 days) at 500 mA g?1 with almost no decay, exhibiting a longer cycle life compared with other metallic oxides. In order to further reveal the intrinsic mechanism, the energy changes for K atom migrating from surface into the sublayer of Sb2O3 are explored by density functional theory calculations. According to the result, the battery using the ether‐based electrolyte exhibits a lower energy change and migration barrier than those using other electrolytes for K‐ion, which is helpful to improve the K‐ion storage performance. It is believed that the work can provide deep understanding and new insight to enhance electrochemical performance using ether‐based electrolytes for KIBs.
Keywords:ether‐based electrolytes  high‐concentration  K‐ion batteries  reduce graphene oxide  Sb2O3
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号