首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Understanding the Film Formation Kinetics of Sequential Deposited Narrow‐Bandgap Pb–Sn Hybrid Perovskite Films
Authors:Junke Wang  Kunal Datta  Junyu Li  Marcel A Verheijen  Dong Zhang  Martijn M Wienk  Ren A J Janssen
Institution:Junke Wang,Kunal Datta,Junyu Li,Marcel A. Verheijen,Dong Zhang,Martijn M. Wienk,René A. J. Janssen
Abstract:Developing efficient narrow bandgap Pb–Sn hybrid perovskite solar cells with high Sn‐content is crucial for perovskite‐based tandem devices. Film properties such as crystallinity, morphology, surface roughness, and homogeneity dictate photovoltaic performance. However, compared to Pb‐based analogs, controlling the formation of Sn‐containing perovskite films is much more challenging. A deeper understanding of the growth mechanisms in Pb–Sn hybrid perovskites is needed to improve power conversion efficiencies. Here, in situ optical spectroscopy is performed during sequential deposition of Pb–Sn hybrid perovskite films and combined with ex situ characterization techniques to reveal the temporal evolution of crystallization in Pb–Sn hybrid perovskite films. Using a two‐step deposition method, homogeneous crystallization of mixed Pb–Sn perovskites can be achieved. Solar cells based on the narrow bandgap (1.23 eV) FA0.66MA0.34Pb0.5Sn0.5I3 perovskite absorber exhibit the highest efficiency among mixed Pb–Sn perovskites and feature a relatively low dark carrier density compared to Sn‐rich devices. By passivating defect sites on the perovskite surface, the device achieves a power conversion efficiency of 16.1%, which is the highest efficiency reported for sequential solution‐processed narrow bandgap perovskite solar cells with 50% Sn‐content.
Keywords:crystallization  film formation  metal halide perovskites  narrow bandgap  solar cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号