首页 | 本学科首页   官方微博 | 高级检索  
     


Detection,characterization and evolutionary aspects of S54LP of SP (SAP54 Like Protein of Sesame Phyllody): a phytoplasma effector molecule associated with phyllody development in sesame ( Sesamum indicum L.)
Authors:Amrita Singh  Suman Lakhanpaul
Affiliation:1.Department of Botany, University of Delhi, Delhi, 110007, India
Abstract:SAP54, an effector protein secreted by phytoplasmas has been reported to induce phyllody. S54LP of SP (SAP54 Like Protein of Sesame Phyllody), a SAP54 ortholog from phyllody and witches’ broom affected sesame (Sesamum indicum L.) was amplified, cloned and sequenced. Comparative sequence and phylogenetic analysis of diverse phytoplasma strains was carried out to delineate the evolution of S54LP of SP. The degree of polymorphism across SAP54 orthologs and the evolutionary forces acting on this effector protein were ascertained. Site-specific selection across SAP54 orthologs was estimated using Fixed Effects Likelihood (FEL) approach. Nonsynonymous substitutions were detected in the SAP54 orthologs’ sequences from phytoplasmas belonging to same (sub) group. Phylogenetic analysis based on S54LP of SP grouped phytoplasmas belonging to same 16SrDNA (sub) groups into different clusters. Analysis of selection forces acting on SAP54 orthologs from nine different phytoplasma (sub)groups, affecting plant species belonging to twelve different families across ten countries showed the orthologs to be under purifying (negative) selection. One amino acid residue was found to be under pervasive diversifying (positive) selection and a total of three amino acid sites were found to be under pervasive purifying (negative) selection. The location of these amino acids in the signal peptide and mature protein was studied with an aim to understand their role in protein–protein interaction. Asparagine residues (at positions 68 and 84) were found to be under pervasive purifying selection suggesting their functional importance in the effector protein. Our study suggests lack of coevolution between SAP54 and 16SrDNA. Signal peptide appears to evolve at a rate slightly higher than the mature protein. Overall, SAP54 and its orthologs are evolving under purifying selection confirming their functional importance in phytoplasma virulence.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号