首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Efficient Organic Solar Cell with 16.88% Efficiency Enabled by Refined Acceptor Crystallization and Morphology with Improved Charge Transfer and Transport Properties
Authors:Lei Zhu  Ming Zhang  Guanqing Zhou  Tianyu Hao  Jinqiu Xu  Jing Wang  Chaoqun Qiu  Nathaniel Prine  Jazib Ali  Wei Feng  Xiaodan Gu  Zaifei Ma  Zheng Tang  Haiming Zhu  Lei Ying  Yongming Zhang  Feng Liu
Abstract:Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.
Keywords:2D electron transport  multilength‐scaled morphology  nonfullerene acceptors  organic solar cells  power conversion efficiency
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号