首页 | 本学科首页   官方微博 | 高级检索  
     


Coordination Engineering of Single‐Crystal Precursor for Phase Control in Ruddlesden–Popper Perovskite Solar Cells
Authors:Yuan Qin  Hongjie Zhong  Jeremy J. Intemann  Shifeng Leng  Minghuan Cui  Chaochao Qin  Min Xiong  Feng Liu  Alex K.‐Y. Jen  Kai Yao
Abstract:2D Ruddlesden–Popper perovskites (RPPs) have recently drawn significant attention because of their structural variability that can be used to tailor optoelectronic properties and improve the stability of derived photovoltaic devices. However, charge separation and transport in 2D perovskite solar cells (PSCs) suffer from quantum well barriers formed during the processing of perovskites. It is extremely difficult to manage phase distributions in 2D perovskites made from the stoichiometric mixtures of precursor solutions. Herein, a generally applicable guideline is demonstrated for precisely controlling phase purity and arrangement in RPP films. By visually presenting the critical colloidal formation of the single‐crystal precursor solution, coordination engineering is conducted with a rationally selected cosolvent to tune the colloidal properties. In nonpolar cosolvent media, the derived colloidal template enables RPP crystals to preferentially grow along the vertically ordered alignment with a narrow phase variation around a target value, resulting in efficient charge transport and extraction. As a result, a record‐high power conversion efficiency (PCE) of 14.68% is demonstrated for a (TEA)2(MA)2Pb3I10 (n = 3) photovoltaic device with negligible hysteresis. Remarkably, superior stability is achieved with 93% retainment of the initial efficiency after 500 h of unencapsulated operation in ambient air conditions.
Keywords:2D perovskites  coordination engineering  perovskite solar cells  phase distribution  single‐crystals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号