首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Straw utilization for biofuel production: A consequential assessment of greenhouse gas emissions from bioethanol and biomethane provision with a focus on the time dependency of emissions
Authors:Benedikt Buchspies  Martin Kaltschmitt  Martin Junginger
Abstract:The shift from straw incorporation to biofuel production entails emissions from production, changes in soil organic carbon (SOC) and through the provision of (co‐)products and entailed displacement effects. This paper analyses changes in greenhouse gas (GHG) emissions arising from the shift from straw incorporation to biomethane and bioethanol production. The biomethane concept comprises comminution, anaerobic digestion and amine washing. It additionally provides an organic fertilizer. Bioethanol production comprises energetic use of lignin, steam explosion, enzymatic hydrolysis and co‐fermentation. Additionally, feed is provided. A detailed consequential GHG balance with in‐depth focus on the time dependency of emissions is conducted: (a) the change in the atmospheric load of emissions arising from the change in the temporal occurrence of emissions comparing two steady states (before the shift and once a new steady state has established); and (b) the annual change in overall emissions over time starting from the shift are assessed. The shift from straw incorporation to biomethane production results in net changes in GHG emissions of (a) ?979 (?436 to ?1,654) and (b) ?955 (?220 to ?1,623) kg CO2‐eq. per tdry matter straw converted to biomethane (minimum and maximum). The shift to bioethanol production results in net changes of (a) ?409 (?107 to ?610) and (b) ?361 (57 to ?603) kg CO2‐eq. per tdry matter straw converted to bioethanol. If the atmospheric load of emissions arising from different timing of emissions is neglected in case (a), the change in GHG emissions differs by up to 54%. Case (b) reveals carbon payback times of 0 (0–49) and 19 (1–100) years in case of biomethane and bioethanol production, respectively. These results demonstrate that the detailed inclusion of temporal aspects into GHG balances is required to get a comprehensive understanding of changes in GHG emissions induced by the introduction of advanced biofuels from agricultural residues.
Keywords:2G biofuels  advanced biofuels  bioethanol  biomethane  consequential LCA  GHG emissions  lignocellulosic biofuels  second‐generation biofuels  time dependency of emissions  wheat straw
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号