首页 | 本学科首页   官方微博 | 高级检索  
     


Genome-Wide Association Studies Using Haplotypes and Individual SNPs in Simmental Cattle
Authors:Yang Wu  Huizhong Fan  Yanhui Wang  Lupei Zhang  Xue Gao  Yan Chen  Junya Li  HongYan Ren  Huijiang Gao
Affiliation:1. Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China.; 2. Department of life sciences, National Natural Science Foundation of China, Beijing, China.; Indiana University Bloomington, United States of America,
Abstract:Recent advances in high-throughput genotyping technologies have provided the opportunity to map genes using associations between complex traits and markers. Genome-wide association studies (GWAS) based on either a single marker or haplotype have identified genetic variants and underlying genetic mechanisms of quantitative traits. Prompted by the achievements of studies examining economic traits in cattle and to verify the consistency of these two methods using real data, the current study was conducted to construct the haplotype structure in the bovine genome and to detect relevant genes genuinely affecting a carcass trait and a meat quality trait. Using the Illumina BovineHD BeadChip, 942 young bulls with genotyping data were introduced as a reference population to identify the genes in the beef cattle genome significantly associated with foreshank weight and triglyceride levels. In total, 92,553 haplotype blocks were detected in the genome. The regions of high linkage disequilibrium extended up to approximately 200 kb, and the size of haplotype blocks ranged from 22 bp to 199,266 bp. Additionally, the individual SNP analysis and the haplotype-based analysis detected similar regions and common SNPs for these two representative traits. A total of 12 and 7 SNPs in the bovine genome were significantly associated with foreshank weight and triglyceride levels, respectively. By comparison, 4 and 5 haplotype blocks containing the majority of significant SNPs were strongly associated with foreshank weight and triglyceride levels, respectively. In addition, 36 SNPs with high linkage disequilibrium were detected in the GNAQ gene, a potential hotspot that may play a crucial role for regulating carcass trait components.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号