首页 | 本学科首页   官方微博 | 高级检索  
     


High-Resolution Mechanical Imaging of Glioblastoma by Multifrequency Magnetic Resonance Elastography
Authors:Kaspar-Josche Streitberger  Martin Reiss-Zimmermann  Florian Baptist Freimann  Simon Bayerl  Jing Guo  Felix Arlt  Jens Wuerfel  Jürgen Braun  Karl-Titus Hoffmann  Ingolf Sack
Abstract:

Objective

To generate high-resolution maps of the viscoelastic properties of human brain parenchyma for presurgical quantitative assessment in glioblastoma (GB).

Methods

Twenty-two GB patients underwent routine presurgical work-up supplemented by additional multifrequency magnetic resonance elastography. Two three-dimensional viscoelastic parameter maps, magnitude |G*|, and phase angle φ of the complex shear modulus were reconstructed by inversion of full wave field data in 2-mm isotropic resolution at seven harmonic drive frequencies ranging from 30 to 60 Hz.

Results

Mechanical brain maps confirmed that GB are composed of stiff and soft compartments, resulting in high intratumor heterogeneity. GB could be easily differentiated from healthy reference tissue by their reduced viscous behavior quantified by φ (0.37±0.08 vs. 0.58±0.07). |G*|, which in solids more relates to the material''s stiffness, was significantly reduced in GB with a mean value of 1.32±0.26 kPa compared to 1.54±0.27 kPa in healthy tissue (P = 0.001). However, some GB (5 of 22) showed increased stiffness.

Conclusion

GB are generally less viscous and softer than healthy brain parenchyma. Unrelated to the morphology-based contrast of standard magnetic resonance imaging, elastography provides an entirely new neuroradiological marker and contrast related to the biomechanical properties of tumors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号